
Paper 141-30

Software Testing Fundamentals—Concepts, Roles, and Terminology
John E. Bentley, Wachovia Bank, Charlotte NC

ABSTRACT
SAS® software provides a complete set of application development tools for building stand-alone, client-server, and
Internet-enabled applications, and SAS Institute provides excellent training in using their software. But making it easy
to build applications can be a two-edged sword. Not only can developers build powerful, sophisticated applications,
but they can also build applications that frustrate users, waste computer resources, and damage the credibility of both
the developer and SAS software. Formal testing will help prevent bad applications from being released, but SAS
Institute offers little guidance related to software testing. For those unfamiliar with the topic, this paper can serve as a
primer or first step in learning about a more formal, rigorous approach to software testing. The paper does not
address any specific SAS product and may be appropriate for even experienced application developers.

INTRODUCTION
With SAS and Java, talented developers can do incredible, wonderful things. AppDev Studio™ provides a full suite of
application development tools for building client-server and Internet-enabled applications. With Base SAS software,
SAS/Connect®, and SAS/Share® as a foundation, developers can easily build a ‘thick-client’ application using
SAS/AF® and SAS/EIS® to access data and share information across a LAN. For ‘thin-client’ Internet-enabled
applications SAS provides web/AF™, web/EIS™, SAS/IntrNet®, and SAS® Integration Technologies.

In the hands of less talented developers, these same tools can still do incredible things but not always wonderful
things. Everyone has used poorly-designed, clumsy, frustrating applications that are only barely able to get the job
done. This is not an indictment of entry-level developers—everyone was a rookie at one time, and often it’s not their
fault anyway. This author believes that the finger is better pointed at those responsible for training the entry-level
developer and, even more so, at those responsible for overseeing the testing and release of their work. In many
cases, however, the problem may be a systemic or scheduling failure—overly aggressive schedules to document
requirement, design, build, test, and release software may leave too little time for adequate testing and force
developers to release code that isn’t ready.

Assuming that a project has fully collected and clearly documented its business and technical requirements (which
might be a stretch, but let’s pretend), a primary cause of failed application software development is lack of a formal
requirements-based testing process. “Formal requirements-based testing” may conjure up an image of a lengthy,
involved, and minutely detailed process but it doesn’t necessarily have to be like that, although in organizations with
mature software engineering practices or at CMM level 3 it probably is. In many if not most organizations, formal
software testing can easily be tailored to the application being examined and has only two real prerequisites.

♦ Business requirements and design documents that allow development of a test plan
♦ People who understanding how to write and carry out a test plan

Collecting and documenting business requirements is outside the scope of this paper, so here we will say only that
clear, concise, and measurable requirements are essential not only to developing the application itself and creating a
test plan but also gauging if the final product meets the users’ needs.

James Whit
despite the
still are foun
and, conseq
remedy this

In this pape
software’, w

Planning, Development and SupportSUGI 30

“It is not enough to do your best. You must know what to do and then do your best.”
W. Edwards Deming
1

taker, Chair of the software engineering program at the Florida Institute of Technology, has noted that
countless hours that go into code development and seemingly endless code reviews, bugs and defects
d in the production release. Why? A big part of his answer is a lack of understanding of software testing
uently, inadequate software testing processes and procedures. The material in this paper may begin to

 situation by presenting some concepts and terms related to software testing.

r, the terms application, program, and system are used rather interchangeably to describe ‘applications
hich is “a program or group of programs designed for end users to accomplish some task”.

2

SOFTWARE TESTING—WHAT, WHY, AND WHO

WHAT IS SOFTWARE TESTING?
Software testing is a process of verifying and validating that a software application or program

1. Meets the business and technical requirements that guided its design and development, and
2. Works as expected.

Software testing also identifies important defects, flaws, or errors in the application code that must be fixed. The
modifier “important” in the previous sentence is, well, important because defects must be categorized by severity
(more on this later).

During test planning we decide what an important defect is by reviewing the requirements and design documents with
an eye towards answering the question “Important to whom?” Generally speaking, an important defect is one that
from the customer’s perspective affects the usability or functionality of the application. Using colors for a traffic
lighting scheme in a desktop dashboard may be a no-brainer during requirements definition and easily implemented
during development but in fact may not be entirely workable if during testing we discover that the primary business
sponsor is color blind. Suddenly, it becomes an important defect. (About 8% of men and .4% of women have some
form of color blindness.)

The quality assurance aspect of software development—documenting the degree to which the developers followed
corporate standard processes or best practices—is not addressed in this paper because assuring quality is not a
responsibility of the testing team. The testing team cannot improve quality; they can only measure it, although it can
be argued that doing things like designing tests before coding begins will improve quality because the coders can
then use that information while thinking about their designs and during coding and debugging.

Software testing has three main purposes: verification, validation, and defect finding.

♦ The verification process confirms that the software meets its technical specifications. A “specification” is a
description of a function in terms of a measurable output value given a specific input value under specific
preconditions. A simple specification may be along the line of “a SQL query retrieving data for a single
account against the multi-month account-summary table must return these eight fields <list> ordered by
month within 3 seconds of submission.”

♦ The validation process confirms that the software meets the business requirements. A simple example of a
business requirement is “After choosing a branch office name, information about the branch’s customer
account managers will appear in a new window. The window will present manager identification and
summary information about each manager’s customer base: <list of data elements>.” Other requirements
provide details on how the data will be summarized, formatted and displayed.

♦ A defect is a variance between the expected and actual result. The defect’s ultimate source may be traced
to a fault introduced in the specification, design, or development (coding) phases.

WHY DO SOFTWARE TESTING?

Why test software? “To find the bugs!” is the instinctive response and many people, developers and programmers
included, think that that’s what debugging during development and code reviews is for, so formal testing is redundant
at best. But a “bug” is really a problem in the code; software testing is focused on finding defects in the final product.
Here are some important defects that better testing would have found.

♦ In February 2003 the U.S. Treasury Department mailed 50,000 Social Security checks without a beneficiary
name. A spokesperson said that the missing names were due to a software program maintenance error.

♦ In July 2001 a “serious flaw” was found in off-the-shelf software that had long been used in systems for
tracking U.S. nuclear materials. The software had recently been donated to another country and scientists in
that country discovered the problem and told U.S. officials about it.

♦ In October 1999 the $125 million NASA Mars Climate Orbiter—an interplanetary weather satellite—was lost
in space due to a data conversion error. Investigators discovered that software on the spacecraft performed
certain calculations in English units (yards) when it should have used metric units (meters).

♦ In June 1996 the first flight of the European Space Agency's Ariane 5 rocket failed shortly after launching,
resulting in an uninsured loss of $500,000,000. The disaster was traced to the lack of exception handling for
a floating-point error when a 64-bit integer was converted to a 16-bit signed integer.

“A clever person solves a problem. A wise person avoids it.”
Albert Einstein

Planning, Development and SupportSUGI 30

3

Software testing answers questions that development testing and code reviews can’t.

♦ Does it really work as expected?
♦ Does it meet the users’ requirements?
♦ Is it what the users expect?
♦ Do the users like it?
♦ Is it compatible with our other systems?
♦ How does it perform?
♦ How does it scale when more users are added?
♦ Which areas need more work?
♦ Is it ready for release?

What can we do with the answers to these questions?

♦ Save time and money by identifying defects early
♦ Avoid or reduce development downtime
♦ Provide better customer service by building a better application
♦ Know that we’ve satisfied our users’ requirements
♦ Build a list of desired modifications and enhancements for later versions
♦ Identify and catalog reusable modules and components
♦ Identify areas where programmers and developers need training

WHAT DO WE TEST?

First, test what’s important. Focus on the core functionality—the parts that are critical or popular—before looking at
the ‘nice to have’ features. Concentrate on the application’s capabilities in common usage situations before going on
to unlikely situations. For example, if the application retrieves data and performance is important, test reasonable
queries with a normal load on the server before going on to unlikely ones at peak usage times. It’s worth saying
again: focus on what’s important. Good business requirements will tell you what’s important.

The value of software testing is that it goes far beyond testing the underlying code. It also examines the functional
behavior of the application. Behavior is a function of the code, but it doesn’t always follow that if the behavior is “bad”
then the code is bad. It’s entirely possible that the code is solid but the requirements were inaccurately or
incompletely collected and communicated. It’s entirely possible that the application can be doing exactly what we’re
telling it to do but we’re not telling it to do the right thing.

A comprehensive testing regime examines all components associated with the application. Even more, testing
provides an opportunity to validate and verify things like the assumptions that went into the requirements, the
appropriateness of the systems that the application is to run on, and the manuals and documentation that accompany
the application. More likely though, unless your organization does true “software engineering” (think of Lockheed-
Martin, IBM, or SAS Institute) the focus will be on the functionality and reliability of application itself.

Testing can involve some or all of the following factors. The more, the better.

♦ Business requirements
♦ Functional design requirements
♦ Technical design requirements
♦ Regulatory requirements
♦ Programmer code
♦ Systems administration standards and restrictions
♦ Corporate standards
♦ Professional or trade association best practices
♦ Hardware configuration
♦ Cultural issues and language differences

Planning, Development and SupportSUGI 30

4

WHO DOES THE TESTING?

Software testing is not a one person job. It takes a team, but the team may be larger or smaller depending on the
size and complexity of the application being tested. The programmer(s) who wrote the application should have a
reduced role in the testing if possible. The concern here is that they’re already so intimately involved with the product
and “know” that it works that they may not be able to take an unbiased look at the results of their labors.

Testers must be cautious, curious, critical but non-judgmental, and good communicators. One part of their job is to
ask questions that the developers might find not be able to ask themselves or are awkward, irritating, insulting or even
threatening to the developers.

♦ How well does it work?
♦ What does it mean to you that “it works”?
♦ How do you know it works? What evidence do you have?
♦ In what ways could it seem to work but still have something wrong?
♦ In what ways could it seem to not work but really be working?
♦ What might cause it to not to work well?

A good developer does not necessarily make a good tester and vice versa, but testers and developers do share at
least one major trait—they itch to get their hands on the keyboard. As laudable as this may be, being in a hurry to
start can cause important design work to be glossed over and so special, subtle situations might be missed that would
otherwise be identified in planning. Like code reviews, test design reviews are a good sanity check and well worth the
time and effort.

Testers are the only IT people who will use the system as heavily an expert user on the business side. User testing
almost invariably recruits too many novice business users because they’re available and the application must be
usable by them. The problem is that novices don’t have the business experience that the expert users have and
might not recognize that something is wrong. Testers from IT must find the defects that only the expert users will find
because the experts may not report problems if they’ve learned that it's not worth their time or trouble.

Key Players and Their Roles

Business sponsor(s) and partners
♦ Provides funding
♦ Specifies requirements and deliverables
♦ Approves changes and some test results

Project manager Plans and manages the project

Software developer(s)
♦ Designs, codes, and builds the application
♦ Participates in code reviews and testing
♦ Fixes bugs, defects, and shortcomings

Testing Coordinator(s) Creates test plans and test specifications based on the
requirements and functional, and technical documents

Tester(s) Executes the tests and documents results

THE V-MODEL OF SOFTWARE TESTING
Software testing is too important to leave to the end of the project, and the V-Model of testing incorporates testing into
the entire software development life cycle. In a diagram of the V-Model, the V proceeds down and then up, from
left to right depicting the basic sequence of development and testing activities. The model highlights the
existence of different levels of testing and depicts the way each relates to a different development phase.

Like any model, the V-Model has detractors and arguably has deficiencies and alternatives but it clearly illustrates that
testing can and should start at the very beginning of the project. (See Goldsmith for a summary of the pros and cons
and an alternative. Marrik’s articles provide criticism and an alternative.) In the requirements gathering stage the
business requirements can verify and validate the business case used to justify the project. The business
requirements are also used to guide the user acceptance testing. The model illustrates how each subsequent phase
should verify and validate work done in the previous phase, and how work done during development is used to guide
the individual testing phases. This interconnectedness lets us identify important errors, omissions, and other
problems before they can do serious harm. Application testing begins with Unit Testing, and in the section titled
“Types of Tests” we will discuss each of these test phases in more detail.

Planning, Development and SupportSUGI 30

The V-Model of Software Testing

Business Case and Production Verification
Statement of Work

Business Requirements User Acceptance Testing

Functional Design System and Integration Testing

Technical Design and
Coding

Unit Testing

Validation
and
Verification Testing Relationship Work Flow

THE TEST PLAN
The test plan is a mandatory document. You can’t test without one. For simple, straight-forward projects the plan
doesn’t have to be elaborate but it must address certain items. As identified by the “American National Standards
Institute and Institute for Electrical and Electronic Engineers Standard 829/1983 for Software Test Documentation”,
the following components should be covered in a software test plan.

 Items Covered by a Test Plan

Component Description Purpose

Responsibilities Specific people who are and
their assignments

Assigns responsibilities and keeps
everyone on track and focused

Assumptions Code and systems status and
availability

Avoids misunderstandings about
schedules

Test Testing scope, schedule,
duration, and prioritization

Outlines the entire process and
maps specific tests

Communication Communications plan—who,
what, when, how

Everyone knows what they need to
know when they need to know it

Risk Analysis Critical items that will be tested Provides focus by identifying areas
that are critical for success

Defect Reporting How defects will be logged and
documented

Tells how to document a defect so
that it can be reproduced, fixed,
and retested

Environment
The technical environment,
data, work area, and interfaces
used in testing

Reduces or eliminates
misunderstandings and sources of
potential delay

5

Planning, Development and SupportSUGI 30

REDUCE RISK WITH A TEST PLAN
The release of a new application or an upgrade inherently carries a certain amount of risk that it will fail to do what it’s
supposed to do. A good test plan goes a long way towards reducing this risk. By identifying areas that are riskier
than others we can concentrate our testing efforts there. These areas include not only the must-have features but
also areas in which the technical staff is less experienced, perhaps such as the real-time loading of a web form’s
contents into a database using complex ETL logic. Because riskier areas require more certainty that they work
properly, failing to correctly identify those risky areas leads to a misallocated testing effort.

How do we identify risky areas? Ask everyone for their opinion! Gather information from developers, sales and
marketing staff, technical writers, customer support people, and of course any users who are available. Historical
data and bug and testing reports from similar products or previous releases will identify areas to explore. Bug reports
from customers are important, but also look at bugs reported by the developers themselves. These will provide
insight to the technical areas they may be having trouble in.

When the problems are inevitably found, it’s important that both the IT side and the business users have previously
agreed on how to respond. This includes having a method for rating the importance of defects so that repair work
effort can be focused on the most important problems. It is very common to use a set of rating categories that
represent decreasing relative severity in terms of business/commercial impact. In one system, '1' is the most severe
and 6' has the least impact. Keep in mind that an ordinal system doesn’t allow an average score to be calculated, but
you shouldn’t need to do that anyway—a defect’s category should be pretty obvious.

1. Show Stopper – It is impossible to continue testing because of the severity of the defect.
2. Critical -- Testing can continue but the application cannot be released into production until this defect is

fixed.
3. Major -- Testing can continue but this defect will result in a severe departure from the business requirements

if released for production.
4. Medium -- Testing can continue and the defect will cause only minimal departure from the business

requirements when in production.
5. Minor– Testing can continue and the defect will not affect the release into production. The defect should be

corrected but little or no changes to business requirements are envisaged.
6. Cosmetic– Minor cosmetic issues like colors, fonts, and pitch size that do not affect testing or production

release. If, however, these features are important business requirements then they will receive a higher
severity level.

WHAT SHOULD A TEST PLAN TEST?
Testing experts generally agree that test plans are often biased towards functional testing during which each feature
is tested alone in a unit test, and that the systems integration test is just a series of unit tests strung together. (More
on test types later.) The problem that this approach causes is that if we test each feature alone and then string a
bunch of these tests together, we might never find that a series of steps such as

open a document, edit the document, print the document, save the document, edit one page,
print one page, save as a new document

doesn’t work. But a user will find out and probably quickly. Admittedly, testing every combination of keystrokes or
commands is difficult at best and may well be impossible (this is where unstructured testing comes in), but we must
remember that features don’t function in isolation from each other.

Users have a task orientation. To find the defects that they will find—the ones that are important to them—test plans
need to exercise the application across functional areas by mimicking both typical and atypical user tasks. A test like
the sequence shown above is called scenario testing, task-based testing, or use-case testing.

An incomplete test plan can result in a failure to check how the application works on different hardware and operating
systems or when combined with different third-party software. This is not always needed but you will want to think
about the equipment your customers use. There may be more than a few possible system combinations that need to
be tested, and that can require a possibly expensive computer lab stocked with hardware and spending much time
setting up tests. Configuration testing isn't cheap, but it’s worth it when you discover that the application running on
your standard in-house platform which "entirely conforms to industry standards" behaves differently when it runs on
the boxes your customers are using. In a 1996 incident this author was involved in, the development and testing was
done on new 386-class machines and the application worked just fine. Not until customers complained about
performance did we learn that they were using 286’s with slow hard drives.

6

Planning, Development and SupportSUGI 30

7

A crucial test is to see how the application behaves when it’s under a normal load and then under stress. The
definition of stress, of course, will be derived from your business requirements, but for a web-enabled application
stress could be caused by a spike in the number of transactions, a few very large transactions at the same time, or a
large number of almost identical simultaneous transactions. The goal is to see what happens when the application is
pushed to substantially more than the basic requirements. Stress testing is often put off until the end of testing, after
everything else that’s going to be fixed has been. Unfortunately that leaves little time for repairs when the
requirements specify 40 simultaneous users and you find that performance becomes unacceptable at 50.

Finally, Marick (1997) points out two common omissions in many test plans--the installation procedures and the
documentation are ignored. Everyone has tried to follow installation instructions that were missing a key step or two,
and we’ve all paged through incomprehensible documentation. Although those documents may have been written by
a professional technical writer, they probably weren’t tested by a real user. Bad installation instructions immediately
cause lowered expectations of what to expect from the product, and poorly organized or written documentation
certainly doesn’t help a confused or irritated customer feel better. Testing installation procedures and documentation
is a good way to avoid making a bad first impression or making a bad situation worse.

 Test Plan Terminology

Term Description

Test Plan

A formal detailed document that describes
♦ Scope, objectives, and the approach to testing,
♦ People and equipment dedicated/allocated to testing
♦ Tools that will be used
♦ Dependencies and risks
♦ Categories of defects
♦ Test entry and exit criteria
♦ Measurements to be captured
♦ Reporting and communication processes
♦ Schedules and milestones

Test Case

A document that defines a test item and specifies a set of test inputs
or data, execution conditions, and expected results. The inputs/data
used by a test case should be both normal and intended to produce a
‘good’ result and intentionally erroneous and intended to produce an
error. A test case is generally executed manually but many test
cases can be combined for automated execution.

Test Script Step-by-step procedures for using a test case to test a specific unit of
code, function, or capability.

Test Scenario
A chronological record of the details of the execution of a test script.
Captures the specifications, tester activities, and outcomes. Used to
identify defects.

Test Run A series of logically related groups of test cases or conditions.

TYPES OF SOFTWARE TESTS
The V-Model of testing identifies five software testing phases, each with a certain type of test associated with it.

Phase Guiding Document Test Type

Development Phase Technical Design Unit Testing

System and Integration
Phase Functional Design System Testing

Integration Testing

User Acceptance Phase Business Requirements User Acceptance Testing

Implementation Phase Business Case Product Verification Testing

Regression Testing applies to all Phases

Planning, Development and SupportSUGI 30

8

Each testing phase and each individual test should have specific entry criteria that must be met before testing can
begin and specific exit criteria that must be met before the test or phase can be certified as successful. The entry and
exit criteria are defined by the Test Coordinators and listed in the Test Plan.

UNIT TESTING
A series of stand-alone tests are conducted during Unit Testing. Each test examines an individual component that is
new or has been modified. A unit test is also called a module test because it tests the individual units of code that
comprise the application.

Each test validates a single module that, based on the technical design documents, was built to perform a certain task
with the expectation that it will behave in a specific way or produce specific results. Unit tests focus on functionality
and reliability, and the entry and exit criteria can be the same for each module or specific to a particular module. Unit
testing is done in a test environment prior to system integration. If a defect is discovered during a unit test, the
severity of the defect will dictate whether or not it will be fixed before the module is approved.

 Sample Entry and Exit Criteria for Unit Testing

Entry Criteria

♦ Business Requirements are at least 80% complete and have been
approved to-date

♦ Technical Design has been finalized and approved
♦ Development environment has been established and is stable
♦ Code development for the module is complete

Exit Criteria

♦ Code has version control in place
♦ No known major or critical defects prevents any modules from moving to

System Testing
♦ A testing transition meeting has be held and the developers signed off
♦ Project Manager approval has been received

SYSTEM TESTING
System Testing tests all components and modules that are new, changed, affected by a change, or needed to form
the complete application. The system test may require involvement of other systems but this should be minimized as
much as possible to reduce the risk of externally-induced problems. Testing the interaction with other parts of the
complete system comes in Integration Testing. The emphasis in system testing is validating and verifying the
functional design specification and seeing how all the modules work together. For example, the system test for a new
web interface that collects user input for addition to a database doesn’t need to include the database’s ETL
application—processing can stop when the data is moved to the data staging area if there is one.

The first system test is often a smoke test. This is an informal quick-and-dirty run through of the application’s major
functions without bothering with details. The term comes from the hardware testing practice of turning on a new piece
of equipment for the first time and considering it a success if it doesn’t start smoking or burst into flame.

System testing requires many test runs because it entails feature by feature validation of behavior using a wide range
of both normal and erroneous test inputs and data. The Test Plan is critical here because it contains descriptions of
the test cases, the sequence in which the tests must be executed, and the documentation needed to be collected in
each run.

When an error or defect is discovered, previously executed system tests must be rerun after the repair is made to
make sure that the modifications didn’t cause other problems. This will be covered in more detail in the section on
regression testing.

 Sample Entry and Exit Criteria for System Testing

Entry Criteria

♦ Unit Testing for each module has been completed and approved; each
module is under version control

♦ An incident tracking plan has been approved
♦ A system testing environment has been established
♦ The system testing schedule is approved and in place

Exit Criteria

♦ Application meets all documented business and functional requirements
♦ No known critical defects prevent moving to the Integration Testing
♦ All appropriate parties have approved the completed tests
♦ A testing transition meeting has be held and the developers signed off

Planning, Development and SupportSUGI 30

9

As part of system testing, conformance tests and reviews can be run to verify that the application conforms to
corporate or industry standards in terms of portability, interoperability, and compliance with standards. For example,
to enhance application portability a corporate standard may be that SQL queries must be written so that they work
against both Oracle and DB2 databases.

INTEGRATION TESTING
Integration testing examines all the components and modules that are new, changed, affected by a change, or
needed to form a complete system. Where system testing tries to minimize outside factors, integration testing
requires involvement of other systems and interfaces with other applications, including those owned by an outside
vendor, external partners, or the customer. For example, integration testing for a new web interface that collects user
input for addition to a database must include the database’s ETL application even if the database is hosted by a
vendor—the complete system must be tested end-to-end. In this example, integration testing doesn’t stop with the
database load; test reads must verify that it was correctly loaded.

Integration testing also differs from system testing in that when a defect is discovered, not all previously executed
tests have to be rerun after the repair is made. Only those tests with a connection to the defect must be rerun, but
retesting must start at the point of repair if it is before the point of failure. For example, the retest of a failed FTP
process may use an existing data file instead of recreating it if up to that point everything else was OK.

 Sample Entry and Exit Criteria for Integration Testing

Entry Criteria

♦ System testing has been completed and signed off
♦ Outstanding issues and defects have been identified and documented
♦ Test scripts and schedule are ready
♦ The integration testing environment is established

Exit Criteria

♦ All systems involved passed integration testing and meet agreed upon
functionality and performance requirements

♦ Outstanding defects have been identified, documented, and presented to
the business sponsor

♦ Stress, performance, and load tests have been satisfactorily conducted
♦ The implementation plan is final draft stage
♦ A testing transition meeting has been held and everyone has signed off

Integration testing has a number of sub-types of tests that may or may not be used, depending on the application
being tested or expected usage patterns.

♦ Compatibility Testing – Compatibility tests insures that the application works with differently configured

systems based on what the users have or may have. When testing a web interface, this means testing for
compatibility with different browsers and connection speeds.

♦ Performance Testing – Performance tests are used to evaluate and understand the application’s scalability

when, for example, more users are added or the volume of data increases. This is particularly important for
identifying bottlenecks in high usage applications. The basic approach is to collect timings of the critical
business processes while the test system is under a very low load (a ‘quiet box’ condition) and then collect
the same timings with progressively higher loads until the maximum required load is reached. For a data
retrieval application, reviewing the performance pattern may show that a change needs to be made in a
stored SQL procedure or that an index should be added to the database design.

♦ Stress Testing – Stress Testing is performance testing at higher than normal simulated loads. Stressing

runs the system or application beyond the limits of its specified requirements to determine the load under
which it fails and how it fails. A gradual performance slow-down leading to a non-catastrophic system halt is
the desired result, but if the system will suddenly crash and burn it’s important to know the point where that
will happen. Catastrophic failure in production means beepers going off, people coming in after hours,
system restarts, frayed tempers, and possible financial losses. This test is arguably the most important test
for mission-critical systems.

♦ Load Testing – Load tests are the opposite of stress tests. They test the capability of the application to

function properly under expected normal production conditions and measure the response times for critical
transactions or processes to determine if they are within limits specified in the business requirements and
design documents or that they meet Service Level Agreements. For database applications, load testing
must be executed on a current production-size database. If some database tables are forecast to grow
much larger in the foreseeable future then serious consideration should be given to testing against a
database of the projected size.

Planning, Development and SupportSUGI 30

10

Performance, stress, and load testing are all major undertakings and will require substantial input from the business
sponsors and IT staff in setting up a test environment and designing test cases that can be accurately executed.
Because of this, these tests are sometimes delayed and made part of the User Acceptance Testing phase. Load
tests especially must be documented in detail so that the tests are repeatable in case they need to be executed
several times to ensure that new releases or changes in database size do not push response times beyond
prescribed requirements and Service Level Agreements.

USER ACCEPTANCE TESTING (UAT)
User Acceptance Testing is also called Beta testing, application testing, and end-user testing. Whatever you choose
to call it, it’s where testing moves from the hands of the IT department into those of the business users. Software
vendors often make extensive use of Beta testing, some more formally than others, because they can get users to do
it for free.

By the time UAT is ready to start, the IT staff has resolved in one way or another all the defects they identified.
Regardless of their best efforts, though, they probably don’t find all the flaws in the application. A general rule of
thumb is that no matter how bulletproof an application seems when it goes into UAT, a user somewhere can still find a
sequence of commands that will produce an error.

To be of real use, UAT cannot be random users playing with the application. A mix of business users with varying
degrees of experience and subject matter expertise need to actively participate in a controlled environment.
Representatives from the group work with Testing Coordinators to design and conduct tests that reflect activities and
conditions seen in normal business usage. Business users also participate in evaluating the results. This insures
that the application is tested in real-world situations and that the tests cover the full range of business usage. The
goal of UAT is to simulate realistic business activity and processes in the test environment.

A phase of UAT called “Unstructured Testing” will be conducted whether or not it’s in the Test Plan. Also known as
guerilla testing, this is when business users bash away at the keyboard to find the weakest parts of the application. In
effect, they try to break it. Although it’s a free-form test, it’s important that users who participate understand that they
have to be able to reproduce the steps that led to any errors they find. Otherwise it’s of no use.

A common occurrence in UAT is that once the business users start working with the application they find that it
doesn’t do exactly what they want it to do or that it does something that, although correct, is not quite optimal.
Investigation finds that the root cause is in the Business Requirements, so the users will ask for a change. During
UAT is when change control must be most seriously enforced, but change control is beyond the scope of this paper.
Suffice to say that scope creep is especially dangerous in this late phase and must be avoided.

 Sample Entry and Exit Criteria for User Acceptance Testing

Entry Criteria

♦ Integration testing signoff was obtained
♦ Business requirements have been met or renegotiated with the Business

Sponsor or representative
♦ UAT test scripts are ready for execution
♦ The testing environment is established
♦ Security requirements have been documented and necessary user access

obtained

Exit Criteria

♦ UAT has been completed and approved by the user community in a
transition meeting

♦ Change control is managing requested modifications and enhancements
♦ Business sponsor agrees that known defects do not impact a production

release—no remaining defects are rated 3, 2, or 1

Nothing is foolproof. Fools are just too darn clever.
anonymous

Planning, Development and SupportSUGI 30

PRODUCTION VERIFICATION TESTING
Production verification testing is a final opportunity to determine if the software is ready for release. Its purpose is to
simulate the production cutover as closely as possible and for a period of time simulate real business activity. As a
sort of full dress rehearsal, it should identify anomalies or unexpected changes to existing processes introduced by
the new application. For mission critical applications the importance of this testing cannot be overstated.

The application should be completely removed from the test environment and then completely reinstalled exactly as it
will be in the production implementation. Then mock production runs will verify that the existing business process
flows, interfaces, and batch processes continue to run correctly. Unlike parallel testing in which the old and new
systems are run side-by-side, mock processing may not provide accurate data handling results due to limitations of
the testing database or the source data.

Sample Entry and Exit Criteria for Production Verification Testing

Entry Criteria

♦ UAT testing has been completed and approved by all necessary parties
♦ Known defects have been documented
♦ Migration package documentation has been completed, reviewed, and

approved by the production systems manager

Exit Criteria

♦ Package migration is complete
♦ Installation testing has been performed and documented and the results

have been signed off
♦ Mock testing has been documented, reviewed, and approved
♦ All tests show that the application will not adversely affect the production

environment
♦ A System Change Record with approvals has been prepared

REGRESSION TESTING

Regression testing is al
to an application under
inadvertently introduce
application to repeat ev
retesting of an applicati
functions, or features fa

Regression testing is co
the newly modified code
by the change. It is im
Regression testing tests

 Sample Entry and

Entry Criter

Exit Criter

CONCLUSION
Software testing is a cri
money by identifying pr
Unfortunately, it is often
staff is unfamiliar with s
every SAS professional

Planning, Development and SupportSUGI 30

Bugs will appear in one part of a working program immediately
after an 'unrelated' part of the program is modified.

Murphy
11

so known as validation testing and provides a consistent, repeatable validation of each change
development or being modified. Each time a defect is fixed, the potential exists to
new errors, problems, and defects. An element of uncertainty is introduced about ability of the
erything that went right up to the point of failure. Regression testing is the probably selective
on or system that has been modified to insure that no previously working components,
il as a result of the repairs.

nducted in parallel with other tests and can be viewed as a quality control tool to ensure that
 still complies with its specified requirements and that unmodified code has not been affected

portant to understand that regression testing doesn’t test that a specific defect has been fixed.
 that the rest of the application up to the point or repair was not adversely affected by the fix.

 Exit Criteria for Regression Testing

ia

♦ The defect is repeatable and has been properly documented
♦ A change control or defect tracking record was opened to identify and track

the regression testing effort
♦ A regression test specific to the defect has been created, reviewed, and

accepted

ia ♦ Results of the test show no negative impact to the application

tical element in the software development life cycle and has the potential to save time and
oblems early and to improve customer satisfaction by delivering a more defect-free product.
 less formal and rigorous than it should, and a primary reason for that is because the project
oftware testing methodologies, approaches, and tools. To partially remedy this situation,
 should be familiar with basic software testing concepts, roles, and terminology.

12

SAS Software provides a comprehensive tool set for building powerful applications. Without adequate testing,
however, there is a greater risk that an application will inadequately deliver what was expected by the business users
or that the final product will have problems such that users will eventually abandon it out of frustration. In either case,
time and money are lost and the credibility and reputation of both the developers and SAS Software is damaged.
More formal, rigorous testing will go far to reducing the risk that either of these scenarios occurs.

REFERENCES AND RESOURCES
♦ Better Software magazine. Free issue at Hhttp://www.zinio.com/offer?issn=1532-3579f&of=PF01&bd=1H
♦ Ergo/Gero Hhttp://www.ergogero.com/FAQ/Part4/cfaqPart4.htmlH (information on color blindness)
♦ Goldsmith, Robin F. (2002). Software Development Magazine, 4-part series, July-October. Information on

the V-Model is at http://www.sdbestpractices.com/documents/s=8815/sdm0208e/
♦ International Institute for Software Testing. Hhttp://www.testinginstitute.com/ H
♦ Marrik, Brian. ”Classic Testing Mistakes” (1997) and “New Models for Test Development” (1999).

http://www.testing.com/writings/writings.html
♦ Parasoft Corporation. “Automated Error Prevention”. http://www.parasoft.com/jsp/aep/aep.jsp?itemId=170
♦ Patton, Ron (2000). Software Testing.
♦ Software Engineering Research Network, University of Calgary, Alberta, Canada.

http://sern.ucalgary.ca/~sdyck/courses/seng621/webdoc.html#Unit
♦ Software Testing Education Hhttp://www.testingeducation.org/coursenotes/ H
♦ Vanderbilt University, MIS Application Services. “MIS Development Methodology”.

Hhttp://mis.vanderbilt.edu/methodology/ H

♦ Wachovia Bank, Training Solutions (2004). Software Testing Fundamentals.

AUTHOR BIOGRAPHY AND CONTACT INFORMATION
Since 1987 John Bentley has used SAS in the healthcare, insurance, and banking industries. He is currently an
Assistant Vice President with Wachovia Bank’s Corporate Data Management Group where he supports the Bank’s
data warehouse and data marts. John is a SAS Certified Advanced Programmer, has been a Section Chair at both
SUGI and SESUG, and was the 2003-2004 President of the Charlotte Area Wachovia In-House SAS Users Group.
John has a Masters degree in Political Science with a Concentration in Southeast Asian Politics and is currently
enrolled in a Masters of Information Systems program. He’s also working to restore a 1976 Triumph Bonneville.

John E. Bentley
Corporate Data Management and Governance
Wachovia Bank
201 S. College Street, NC-1025
Charlotte NC 28210
john.bentley@wachovia.com

DISCLAIMER
The views and opinions expressed here are those of the author and not those of Wachovia Bank. Wachovia Bank
does not endorse, recommend, or promote any of the computing architectures, platforms, software, techniques or
styles referenced in this paper.

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Planning, Development and SupportSUGI 30

	SUGI 30 Proceedings Table of Contents

